KCMO 311 data: Health Department

UMKC Center for Health Insights
Earl F Glynn
2013-12-12. Last modified 2015-01-04.

Frequency Counts of Kansas City, MO 311 Reports

https://data.kcmo.org/311/KCMOPS311-Data/7at3-sxhp
2015-01-03

The current file has 819903 rows.

Health Department

health <- d[d$DEPARTMENT == "Health", ]
dim(health)  
## [1] 14014    34

There are 14014 Health Department records in the file of 819903 records.

Source by Year

table(health$SOURCE, health$CreationYear)
##        
##         2007 2008 2009 2010 2011 2012 2013 2014 2015
##   EDC      0    0    0    0    0    0    1    0    0
##   EIP      1    0    0    0    0    1    0    0    0
##   EMAIL   13   38   29   35   21   32   44   40    1
##   INSPE    0   13    1    1   25    4    4    1    0
##   MAIL     0    0    0    3    1    1    0    0    0
##   PHONE  864 1335 1364 1592 1634 1713 1701 1722    4
##   SYS      0    0    0    0    1    0    0    0    0
##   TWIR     0    0    0    0    0    0    5    5    0
##   VOICE    0   10   14   18    9    0    0    0    0
##   WALK     1    2    6    9    6   10    8    5    0
##   WEB      3   33   42  246  310  395  409  228    0

Status

Reports by Status:

table(health$STATUS,health$CreationYear)
##        
##         2007 2008 2009 2010 2011 2012 2013 2014 2015
##   CANC     0    0    1    0    0    1    0    0    0
##   DUP      0    0    9    4    0    0    0    1    0
##   OPEN     0    0    0    0    0    0    0  110    4
##   RESOL  882 1431 1446 1900 2007 2155 2172 1889    1
##   RHOLD    0    0    0    0    0    0    0    1    0

Creation Year

Reports by Creation Year and Month:

table(health$CreationYear, health$CreationMonth)
##       
##          1   2   3   4   5   6   7   8   9  10  11  12
##   2007  18  35  60  62  58  79  70  82 100 137  97  84
##   2008 101  63  77 105 102 125 152 162 163 178 109  94
##   2009  73  70  94  94 119 122 148 158 166 195 132  85
##   2010  88  95 121 150 172 174 183 212 200 228 165 116
##   2011 105  93 154 142 190 190 182 224 227 219 168 113
##   2012 122 147 173 171 180 177 202 228 240 199 178 139
##   2013 135 103 140 229 201 202 237 213 246 213 138 115
##   2014 101 112 148 153 165 154 244 198 197 232 147 150
##   2015   5   0   0   0   0   0   0   0   0   0   0   0

Work Group by Year

table(health$WORK.GROUP, health$CreationYear)
##                                         
##                                          2007 2008 2009 2010 2011 2012 2013 2014 2015
##   Health--                                299  376  498   22    0    4    8   17    0
##   Health-Air Quality-                       0    0    0  161  166  151  115   96    1
##   Health-Communicable Disease Control-      0    0    0    0    1    2    0    0    0
##   Health-Community Environmental Health-    0    0    0   65   74   76   94   82    0
##   Health-Food Protection-                   0    0    0  382  411  426  605  472    0
##   Health-Healthy Homes-                     0    0    0   34   27   36   18   37    0
##   Health-Healthy Homes-Bedbugs              0    0    0    9   57   82   59   47    0
##   Health-Lead Poisoning Prevention-         0    0    0    4    7    2    1    2    0
##   Health-Noise Control-                     0    0    0  175  175  291  260  212    0
##   Health-Rat-                             583 1055  958  996 1046 1063  979 1013    4
##   Health-Tobacco Control-                   0    0    0   56   43   23   33   23    0

Creation Year vs Close Year

Reports by Creation Year and Close Year

table(health$CreationYear, health$CloseYear)
##       
##        2007 2008 2009 2010 2011 2012 2013 2014 2015
##   2007  868   13    1    0    0    0    0    0    0
##   2008    0 1405   26    0    0    0    0    0    0
##   2009    0    0 1431   24    0    0    0    0    0
##   2010    0    0    0 1886   18    0    0    0    0
##   2011    0    0    0    0 1993   14    0    0    0
##   2012    0    0    0    0    0 2126   29    0    0
##   2013    0    0    0    0    0    0 2138   34    0
##   2014    0    0    0    0    0    0    0 1890    0
##   2015    0    0    0    0    0    0    0    0    1

Request Type by Year

counts <- as.data.frame.matrix(table(health$REQUEST.TYPE, health$CREATION.YEAR))

counts <- cbind(counts, TOTAL=apply(counts,1,sum))
counts <- rbind(counts, TOTAL=apply(counts,2,sum))

counts                                                                                        
##                                     2007 2008 2009 2010 2011 2012 2013 2014 2015 TOTAL
## Barking Dog                            0    0    0    0    0    0    1    0    0     1
## Bedbugs Problem                        0    0    0    9   57   82   59   45    0   252
## Childhood Lead Poisoning Prevention    0    0    0    4    7    2    1    2    0    16
## Communicable Disease Control           0    0    0    0    1    1    0    0    0     2
## Food Establishment Complaints          0    0    0  382  411  425  605  469    0  2292
## Health-All                           299  376  498   22    0    0    0    0    0  1195
## Healthy Homes Program                  0    0    0   34   27   36   18   37    0   152
## Hotel and Motel Inspections            0    0    0   39   46   41   59   57    0   242
## Integrated Pest Management Class       0    0    0    0    0    0    0    2    0     2
## Noise Complaints                       0    0    0  175  175  291  259  213    0  1113
## Outdoor Air Quality                    0    0    0  161  166  151  115   96    1   690
## Public Pool Inspections                0    0    0   14   15   15   20   11    0    75
## Public Restroom Sanitation             0    0    0   12   13   20   14   14    0    73
## Questions or  Comments                 0    0    0    0    0    5    9   20    0    34
## Rat Control Education                583   66    0    0    0    0    0    0    0   649
## Rat Control Treatment                  0  989  958  996 1046 1063  979 1012    4  7047
## Smoking Complaints                     0    0    0   56   43   23   33   23    0   178
## Zoning Inspections and Violations      0    0    0    0    0    1    0    0    0     1
## TOTAL                                882 1431 1456 1904 2007 2156 2172 2001    5 14014

ZIP Code by Year

table(health$ZIP.CODE, health$CreationYear)
##        
##         2007 2008 2009 2010 2011 2012 2013 2014 2015
##            0    0    1    3    3    2    1    3    0
##   64055    1    3    0    0    0    0    0    0    0
##   64101    1    1    1    3    0    6    3    5    0
##   64102    0    0    2    4    2    4    2    2    0
##   64105    8    8   21   21   18   24   25   16    0
##   64106   21   31   35   65   78   69   78   48    0
##   64108   21   28   41   97   85   99  114   73    0
##   64109   40   74   68   65   97   97   69  109    3
##   64110   60   92   80   89   95  118   96  118    0
##   64111   28   56   73  120  122  174  134  108    0
##   64112   14   18   23   42   38   52   61   52    0
##   64113   11   37   25   43   46   40   47   50    0
##   64114   24   41   39   75   81   91  101   78    0
##   64116    3   11   11   21   20   15   37   27    0
##   64117    8    8   18   24   18   18   38   29    0
##   64118    7   10   15   37   32   21   40   27    0
##   64119    7   14    7   11   24   18   23   24    0
##   64120    3    4    8   16   23   18   13    3    0
##   64123   21   22   25   26   48   57   54   41    0
##   64124   18   29   47   38   62   47   51   43    0
##   64125    4    7    9   12   10    7   14   19    0
##   64126   14   27   20   14   22   32   27   20    0
##   64127  107  161  143  184  199  264  206  165    0
##   64128   90  163  165  193  163  180  178  167    0
##   64129    9   26   25   22   23   36   50   31    0
##   64130  133  247  265  257  277  253  229  261    0
##   64131   54   85   75   83   75   84   93   98    0
##   64132   66   96   71  100  105  110  124  123    2
##   64133   11   13   20   26   17   34   26   23    0
##   64134   24   49   32   53   51   37   59   59    0
##   64136    0    1    2    8    5    4   12    9    0
##   64137   10    7    4   14    9    8   15   12    0
##   64138   22   25   21   36   40   33   43   40    0
##   64139    1    1    3    1    1    0    0    2    0
##   64145    4    1    5   19    5    8    5    8    0
##   64146    2    1    1    1    0    0    1    2    0
##   64147    0    0    1    0    0    2    2    1    0
##   64149    0    0    0    0    0    0    1    0    0
##   64151    6    5   12    8   26   11   16   21    0
##   64152    2    3    4    9    7    4    7   10    0
##   64153    5    6    6   15   32   14   18   19    0
##   64154    5    4    8   16   12   16   12   12    0
##   64155    7    6    9   10   11   27   20   16    0
##   64156    1    0    2    1    0    1    0    0    0
##   64157    3    4    8    4    9   10   11   13    0
##   64158    3    2    4    7    8    5   10    7    0
##   64160    0    0    0    0    0    1    0    0    0
##   64161    3    3    1    9    2    4    3    7    0
##   64163    0    1    0    2    6    0    3    0    0
##   64165    0    0    0    0    0    1    0    0    0

City Council District by Year

table(health$COUNCIL.DISTRICT, health$CreationYear)
##    
##     2007 2008 2009 2010 2011 2012 2013 2014 2015
##      105  145  125   44   27   24   15    2    0
##   1   56   72  102   94   82   75  124  108    0
##   2   48   64   81   86  117   80   86   91    0
##   3  294  522  513  708  730  792  720  690    1
##   4  119  212  235  419  484  574  558  441    2
##   5  181  325  319  359  384  396  432  467    2
##   6   79   91   81  194  183  215  237  202    0

Quality of Service by Year

table(health$QUALITY.OF.SERVICE, health$CreationYear)
##    
##     2007 2008 2009 2010 2011 2012 2013 2014 2015
##      882 1429 1452 1795 1866 1978 2073 1998    5
##   1    0    0    0   17    9   16    6    0    0
##   2    0    0    0    4    3    5    6    2    0
##   3    0    0    0   15   19    8    9    0    0
##   4    0    1    1   27   24   51   19    0    0
##   5    0    1    3   46   86   98   59    1    0

Timeliness of Service by Year

table(health$TIMELINESS.OF..SERVICE, health$CreationYear)
##    
##     2007 2008 2009 2010 2011 2012 2013 2014 2015
##      882 1429 1452 1795 1866 1983 2079 1999    5
##   1    0    0    0   12    5   11    5    0    0
##   2    0    0    0    7    2    4    3    0    0
##   3    0    0    0   17   20    5    7    0    0
##   4    0    1    1   25   25   45   14    2    0
##   5    0    1    3   48   89  108   64    0    0

Customer Service by Year

table(health$CUSTOMER.SERVICE, health$CreationYear)
##    
##     2007 2008 2009 2010 2011 2012 2013 2014 2015
##      882 1429 1452 1795 1867 1990 2076 1998    5
##   1    0    0    0    5    2    6    5    0    0
##   2    0    0    0    7    2    2    3    1    0
##   3    0    0    0    9   11    8    8    0    0
##   4    0    1    2   29   29   38   13    1    0
##   5    0    1    2   59   96  112   67    1    0

Top 50 Addresses

counts <- sort(table(health$ADDRESS.WITH.GEOCODE), decreasing=TRUE)
counts <- data.frame(Address=names(counts), Counts=counts)
row.names(counts) <- 1:nrow(counts)
head(counts, 50)
##                                                                                        Address Counts
## 1         2400 TROOST AVE\nKansas City, Missouri 64108\n(39.08309077100046, -94.5706809889997)     90
## 2            414 12TH ST\nKansas City, Missouri 64106\n(39.099740099000485, -94.5776004439997)     81
## 3       4508 MONROE AVE\nKansas City, Missouri 64130\n(39.043731110000465, -94.54149021999967)     27
## 4            1603 39TH ST\nKansas City, Missouri 64111\n(39.05724046800049, -94.6040902639997)     25
## 5           417 18TH ST\nKansas City, Missouri 64108\n(39.091630335000445, -94.57811090599967)     24
## 6            6006 31ST ST\nKansas City, Missouri 64129\n(39.0687102870005, -94.51382046299966)     23
## 7      5620 BANNISTER RD\nKansas City, Missouri 64132\n(38.98687337400048, -94.55216991399965)     22
## 8           6101 87TH ST\nKansas City, Missouri 64138\n(38.96726104200047, -94.51712059999966)     21
## 9      3325 MONTGALL AVE\nKansas City, Missouri 64128\n(39.06518084600049, -94.55191030899965)     20
## 10        8600 WARD PKWY\nKansas City, Missouri 64114\n(38.97211338700049, -94.60567334699965)     19
## 11       2450 GRAND BLVD\nKansas City, Missouri 64108\n(39.08256072100045, -94.58180051399967)     18
## 12   3051 VAN BRUNT BLVD\nKansas City, Missouri 64128\n(39.069660920000445, -94.5205509439997)     18
## 13         5150 OAK TRFY\nKansas City, Missouri 64118\n(39.21427358200049, -94.57336919499966)     16
## 14         9236 MCGEE ST\nKansas City, Missouri 64114\n(38.96009038800048, -94.58761032099966)     16
## 15     928 WYANDOTTE ST\nKansas City, Missouri 64105\n(39.102730272000485, -94.58545094499965)     16
## 16          4019 31ST ST\nKansas City, Missouri 64128\n(39.06930539400048, -94.53644641799968)     15
## 17        5101 TROOST AVE\nKansas City, Missouri 64110\n(39.0340104550005, -94.57342111699967)     15
## 18        5714 LOCUST ST\nKansas City, Missouri 64110\n(39.022741134000455, -94.5821208489997)     15
## 19           918 9TH ST\nKansas City, Missouri 64106\n(39.103180814000496, -94.57135046499968)     15
## 20         2456 OLIVE ST\nKansas City, Missouri 64127\n(39.08094061100047, -94.55457092899968)     14
## 21         3045 60TH ST\nKansas City, Missouri 64130\n(39.017380716000446, -94.54922088199964)     14
## 22     1223 COLORADO AVE\nKansas City, Missouri 64127\n(39.09688013400046, -94.52013036199969)     13
## 23       1600 PARVIN RD\nKansas City, Missouri 64116\n(39.166740710000454, -94.56055012199965)     13
## 24        2400 Troost Ave\nKansas City, Missouri 64108\n(39.08309077100046, -94.5706809889997)     13
## 25         2546 PARK AVE\nKansas City, Missouri 64127\n(39.07915111700049, -94.55584074399968)     13
## 26      5500 PROSPECT AVE\nKansas City, Missouri 64130\n(39.0264007830005, -94.55520007499968)     13
## 27         7100 PARVIN RD\nKansas City, Missouri 64117\n(39.1689404170005, -94.49696026699968)     13
## 28         9103 39TH ST\nKansas City, Missouri 64133\n(39.052450430000476, -94.47237056099965)     13
## 29     1421 PROSPECT AVE\nKansas City, Missouri 64127\n(39.09526002500047, -94.55158075599968)     12
## 30       3132 POPLAR AVE\nKansas City, Missouri 64128\n(39.06777002500047, -94.52679055399966)     12
## 31          4001 MILL ST\nKansas City, Missouri 64111\n(39.05353011900047, -94.59381075299967)     12
## 32   4163 BROADWAY BLVD\nKansas City, Missouri 64111\n(39.051340782000466, -94.58901034499968)     12
## 33         2454 PARK AVE\nKansas City, Missouri 64127\n(39.08118028700045, -94.55574049599966)     11
## 34     4800 BANNISTER RD\nKansas City, Missouri 64132\n(38.98687337400048, -94.55216991399965)     11
## 35        5706 WABASH AVE\nKansas City, Missouri 64130\n(39.0226408850005, -94.55657013899969)     11
## 36   6330 BROOKSIDE PLZ\nKansas City, Missouri 64113\n(39.013407320000454, -94.59073066799965)     11
## 37  8304 HICKMAN MILLS DR\nKansas City, Missouri 64132\n(38.97554019100045, -94.5541100159997)     11
## 38       11300 HOLMES RD\nKansas City, Missouri 64131\n(38.92043113400047, -94.58379050599967)     10
## 39 11801 BLUE RIDGE BLVD\nKansas City, Missouri 64134\n(38.91005022200045, -94.52113054299969)     10
## 40     1524 CHELSEA AVE\nKansas City, Missouri 64127\n(39.093200896000496, -94.52567053499968)     10
## 41      1603 ELMWOOD AVE\nKansas City, Missouri 64127\n(39.09234014200047, -94.52893034199968)     10
## 42      2000 GRAND BLVD\nKansas City, Missouri 64108\n(39.088851030000455, -94.58150092099964)     10
## 43        2532 POPLAR AVE\nKansas City, Missouri 64127\n(39.07865102700049, -94.5257004939997)     10
## 44           2620 43RD ST\nKansas City, Missouri 64117\n(39.17148004700044, -94.5464300539997)     10
## 45    3801 BROADWAY BLVD\nKansas City, Missouri 64111\n(39.05847213600049, -94.59058843699967)     10
## 46        3803 TRUMAN RD\nKansas City, Missouri 64127\n(39.09414871700045, -94.53767172899967)     10
## 47        4002 OAK TRFY\nKansas City, Missouri 64116\n(39.157762440000454, -94.57280868899966)     10
## 48          4416 26TH ST\nKansas City, Missouri 64127\n(39.07820048400049, -94.53106091199965)     10
## 49       8023 WAYNE AVE\nKansas City, Missouri 64131\n(38.982070175000445, -94.56923026499965)     10
## 50        8320 CHURCH RD\nKansas City, Missouri 64158\n(39.24274064600047, -94.46184100499966)     10